Polarimetry with Phased-Array Feeds

Bruce Veidt Dominion Radio Astrophysical Observatory Herzberg Institute of Astrophysics National Research Council of Canada Penticton, British Columbia, Canada

Provo, 4 May 2010

National Research Council Canada

Outline

- Radio astronomy & polarimetry
- Stokes parameters
- PHAD receiving system
- Calibration, measurements & results

All-Sky Polarization Map

Courtesy Maik Wolleben and Tom Landecker

*

National Research Council Canada

SKA Design Reference Mission

http://www.skatelescope.org/PDF/091001_DRM_v0.4.pdf

- Cosmic Magnetism Deep Field
- Wide-Field Polarimetry
- Testing Theories of Gravity using Ultra-relativistic Binaries
- Pulsar Timing to Detect Gravitational Waves

Summary of Requirements

- frequency range: \sim 0.3 3 GHz
- bandwidth: 0.5 GHz
- polarization purity
 - polarization surveys: 25 dB (wide field)
 - pulsar timing: 40 dB (boresight, narrow field)
- time resolution: 50 μ s (100 ns for timing)
- survey time
 - deep field: 100 400 hours per pointing
 - wide field: 1 hour/field

Polarization — Two Worldviews

Engineers	Astronomers	
highly-polarized sources	weakly-polarized sources $\lesssim 10\%$	
bright sources	weak sources (\sim 10 Jy)	
co-pol/cross-pol/ellipticity	Stokes (un-pol/linear/circular)	

Typical Calibration Sources

Source	S , Jy $/{\sf pol}$	% pol	P_s , Jy
Cas A	1861	0.27	10
Cyg A	1589	0.5	17
3C270	17.2	7.6	2.6
3C286	14.8	9.5	2.7
	_		

(1.4 GHz)

Also regions of extended emission visible in N sky

• Question: what level of polarization purity is possible when polarized signal of calibrator is swamped by unpolarized emission?

Stokes Parameters

• Stokes Parameters are a way of describing a partially-polarized radiation field

$$I = \left\langle |e_x|^2 + |e_y|^2 \right\rangle$$
$$Q = \left\langle |e_x|^2 - |e_y|^2 \right\rangle$$
$$U = 2 \Re \left\langle e_x \cdot e_y^* \right\rangle$$
$$V = 2 \Im \left\langle e_x \cdot e_y^* \right\rangle$$

$$I^2 \ge Q^2 + U^2 + V^2$$

National Research Council Canada

Stokes Parameters (Pictorially)

http://en.wikipedia.org/wiki/Stokes_parameters

References

- Heiles' tutorial (single dish mostly)
 - *Single-Dish Radio Astronomy: Techniques and Applications*, ASP vol. 278, 2002
 - this reference and other useful memos at http://astro.berkeley.edu/~heiles/handouts/handouts_radio.html
- Hamaker/Sault/Bregman series of papers on polarimetry in *Astronomy and Astrophysics Supplements* (interferometry mostly)
 - search ADS
 - Johan Hamaker's web page: http://www.astron.nl/~hamaker/

PHAD receiving system

- Phased-Array Feed Demonstrator = PHAD
- Engineering demonstrator
- Vivaldi-element based array (dual polarization)
- 84 active elements ($6 \times 7 = 42$ per polarization)
- Data store \rightarrow off-line beamforming

PHAD Specifications

Frequency range	1–2 GHz		
Array size	0.76 m $ imes$ 0.76 m		
Number of elements	9 imes10 imes2 polarizations = 180		
Active elements	42 imes 2 polarizations = 84		
Element spacing	$\lambda_{min}/2=$ 76 mm		
Receiver architecture	direct conversion (complex)		
Bandwidth	4 MHz/sideband		
Sample rate	10 MHz		
Sample precision	14 bits		
Memory depth	16 MB/element		

PHAD Array

National Research Council Canada

PHAD on CART Dish

National Research Council Canada

- 10-metre diameter
- $f/D = 0.45 \Rightarrow \theta_{half} = 58^{\circ}$
- RMS surface error 1.2 mm
- composite construction

Vivaldi Element Layout

National Research Council Canada Conseil national de recherches Canada

15

Typical Element S_{11} (Passive)

National Research Council Canada de recherches Canada

16

Beamformer Calibration

Use Conjugate Field Matching (CFM) for two polarizations

- 1. Observe unpolarized calibration source and calculate covariance $\Rightarrow \mathbf{R}_{\mathit{on}}$
- 2. Observe dark sky and calculate covariance $\Rightarrow \mathbf{R}_{off}$
- 3. Calculate difference $\mathbf{R}_{on} \mathbf{R}_{off}$ and calculate eigenvectors
- 4. Select two dominant eigenvectors
- 5. Conjugate of eigenvectors are weights for the two polarizations

Synthesized Stokes Beams PHAD Polarization Response Stokes I 1.0 Stokes Q ו•× Stokes U 0.8 Amplitude, arb. units Stokes V 0.6 0.4 0.2 0.0 -2 $^{-1}$ 0 1 2 Azimuth, degrees

19

Summary of Instrumental Polarization

param	eter	with cross-pol		no cross-pol	
Q/I	\leftrightarrow	0.062	-12 dB	0.055	-13 dB
U/I	\swarrow	0.006	-22 dB	0.027	-16 dB
V/I	\bigcirc	0.007	-22 dB	0.021	-17 dB

$$rac{I_{x-pol}}{I_{no-x-pol}} = 1.04 \; (0.17 \, \mathrm{dB})$$

Is This Calibration Complete?

- We have two orthogonal beams
- We have not established polarization angle
 - CFM solutions for different beams will have different rotational angles
 - observe astronomical calibrator with known polarization angle
 - or on-dish calibration source (watch out for reflections)
 - or cross-correlation with reference antenna in an interferometer
- Do not have "handedness" of U and V (phase between e_x and e_y)
 - requires another observation with a polarized source
- *But*, at this point calibration is similar to what is done for conventional horn feeds

Electronic Gain Stability

- As long as Stokes beams are stable, instrumental polarization can be corrected
- How stable?
- Simulate by introducing random gain errors into recorded data streams and reprocessing
- Compare with a simple model: $e = \sum_{i=1}^{n} (1 + \Delta g \rho(i))$

Polarization Purity with Gain Fluctuations

National Research Conseil national Council Canada de recherches Canada

Polarization Purity with Gain Fluctuations (II)

*

National Research Conseil national Council Canada de recherches Canada

Polarization Purity with Phase Fluctuations

National Research Conseil national Council Canada de recherches Canada

25

Discussion on Stability Specification

- Gain stability more stringent than phase stability
 - to meet 40 dB spec need gain stability of 0.0018 dB
 - ATA measures 0.0009 dB over 1-3 minutes (Memo 76)
 - phase stability of $\sim 0.2^\circ$
- Cross-coupling between Stokes parameters for PAFs more complicated than horn feeds
 - gain fluctuations are seen in U and V
 - stability will be an issue with wide-band single-pixel feeds too

Discussion on Calibration System

- Calibration system crucial for PAFs
 - {monitor/correct} {gain/phase} fluctuations in receivers
 - provide coordinate system references
 - dish with very good polarization properties to act as a polarization reference in an interferometer?
- Sidelobes are highly polarized so spillover can introduce a contaminating signal

Acknowledgments

PHAD Team:

Tom Burgess, Rob Messing, Rick Smegal, Gary Hovey, Peter Dewdney

Useful discussions on polarimetry:

Maik Wolleben, Tom Landecker, Tony Willis, Karl Warnick

The End

National Research Council Canada