

Progress in the Effelsberg Cryo-PAF developments

S. Heyminck¹, G. Wieching¹, C. Kasemann¹, P. Pütz¹, E. Barr¹, O. Polch¹, B. Klein¹, C. Leinz¹, A. Kraus¹, M. Kramer¹, Chengjin Jin², R. Castenholz¹, N. Esser¹, A. Henseler¹, I. Krämer¹, M. Kuntschev¹, S. Lenz¹, Y. Men¹, M. Nahlbach¹, S. Türk¹, Y. Yiannakis¹

 Max Planck Institute for Radio Astronomy, Bonn, Germany email: heyminck@mpifr-bonn.mpg.de
 National Astronomical Observatories, Chinese Academy of Sciences

Outline

- Introduction / Background
- Overall layout
- Infrastructure setup
- Cryostat
 - antenna-array and cryogenic frontend
 - analog signal chain and digitizer
- Channelizer and backend-system
- Conclusions

Date: 22.4.2024 S. Heymi

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Introduction / Background

- Cryo PAF project at MPIfR is embedded into the "Low Frequency Gravitational Wave Astronomy and Gravitational Physics in Space"
 - a collaboration of CAS and MPG
- MPIfR started technical activities in cryogenic PAF developments back in early 2018
 - starting with a 4 year period of unbiased design studies
 - in all technically important areas (e.g. antennas, LNAs, system integration, digitization, beamforming, backend architecture...)
 - design of the first gen. Cryogenic PAF for Effelsberg started late 2021
 - The frontend now also is embedded into the EU Radioblocks project as technology demonstrator for PAF backend developments

Gravitational waves are a prediction from Einstein's theory of general relativity:

Date: 22.4.2024

- They are emitted when masses are asymmetrically accelerated, and propagate through the Universe, carrying information about the objects that they created them.
- Their existence has been confirmed first by observations of binary pulsars.

Sub-project B2 targets to develop PAF systems for Effelsberg and FAST

Phase of design studies

Extensive studies on

- PAF theory (e.g. different beamforming algorithms)
- Antenna types (e.g. dipoles, Vivaldi type antennas)

Y. Yiannakis Y. Session 4)

- PAF focal plane layout
 - geometries (e.g. squared, hexagonal, Vogels-pattern)
 - element spacing
 - reaction on dead elements
 - RFI mitigation capabilities
- LNA designs and options of integration
- Analog signal chain options and early prototypes
- Options for digitization and channelization
- Backend-options incl. Beamformer
 (e.g. FPGA-based beamformer vs. GPU based)

CryoPAF frequency range

Band definition with astronomers on project start: above L-band, below C-band

Final down selection due to mainly technical reasons:

- 1. Possible physical size of the receiver
 - limits the accessible focal plane area to 60 cm diameter
 - → approx. 250 receiving elements (~125 elements per polarization) at 3 GHz
 - but only ~37 pixels at 1.5GHz for proper beam-forming with the large blockage of the telescope 37 beams are tight

2. RFI situation

- below 2.4 GHz the RFI situation is difficult
- → a wider band PAF receiver could suffer from saturation

- requires many elements to do efficient RFI suppression (degrees of freedom)
- 3. Cost, risk, and required effort limit the upper band edge to in maximum 4 GHz
 - realistically even only to ~3.9 GHz
 - the given boundary conditions advice for roughly 2.6 to 3.9 GHz

The receiver layout

Date: 22.4.2024

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Effelsberg infrastructure: Data fiber (1)

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Effelsberg infrastructure: Data

Effelsberg infrastructure: Data fiber (3)

Focal plane layout

Nominal spacing:

Number of elements:

Horizontal polarization

Vertical polarization

42 mm

253

: 124

: 129

LNAs

Sub-circuit - warm testingtest fixtures

Noise-gain traces of several MMIC die measured in probe station.

Comparison of noise-gain traces of packed LNA vs. MMIC die in probe station.

- 300 MMICs are ordered already
 - delivery expected in Spring 2024

Date: 22.4.2024

actually we are establishing the production line for the cryogenic frontends

INAS

Room-temperature S-parametes

Date: 22.4.2024

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Page :11

Integrated cryogenic frontend

Actual choice for the antenna is a modified DRA:

- The production including the production LNA-MMIC

 3 Automated place of the LNA-MMIC

 pick and place of the LNA-MMIC already tested in house: survives cooling and shows the pred:
- can illuminate the Effelsberg main dish out of the pri
- can be fully integrated into the cryogenic from
- low loss

easy to manufacture (e.g. 3

Above: far-field measurement black: measurement data simulation data

Right: early 3D-printed antenna prototype

Page :12

fully integrated frontend Antenna feed-structure

RFI-bandpass filter

LNA DC bias circuitry

Balun

Cryogenic frontend - first assembly

Analog signal processor

A highly integrated four channel signal processor

- main difficulty for the development was cross talk
 - gain is > 60 dB → cross talk should be < -60 dB !!</p>
- is fully remote controlled by the digitizer

Final Production unit has 8 channels (under development)

• can be 1:1 connected to the digitizer

- foot-print and connectors are compatible to analog signal chain
 - can be directly 1:1 connected if required
 - ADC board can handle IO and power of the warm analog signal processor
- four ADCs with 2 inputs each (TI ADC12DJ4000, or ADC12DJ5200)
 - up to 2.0, or 2.6 GHz of bandwidth per channel possible

- analog input bandwidth up to 5.2 GHz
- FireFly (JESD 204C protocol) connection towards channelizer
- first prototype is ready and currently being tested

The Cryostat (artist impression)

Calibration system

- to ensure relative phase & amplitude stability between the elements
- main layout of the system is ready
 - horn antenna is in production

The channelizer

- Dedicated Faraday cage in the A-Tower
- Channelizer
 - two FPGA boards, power supply
 - 16 ADC input channel in total (via FireFly)
 - over-sampled poly-phase filter-bank for each input
 - ✓ up to 2000 channels per input
 - Output: eight 100 GBit Ethernet connections
- Prototype is under test at the moment
- Production of 18 Units has started (all components are ordered)

Date: 22.4.2024

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Page :19

And its new home in the A-tower

ASPFR

Beam-former evaluation

	E XILINX。	GEFORCE RTX
Pro	Low latency stand-alone device Energy saving	 Fast prototyping (PoC) / General Purpose Flexibility and less devel effort Tensor Core promising technology for CBF processing
Contra	High development effortless flexibilitySoftware maintenance	Batch processing -> latencyhigher energy costsAvailability
Power	16 kW 17520 kWh/a (12.5%)	36 kW 39420 kWh/a (12.5%)
Size	40 HU; 1.78 m	72 HU; 3.2 m
Est. costs	386,999 €	310,482 €

20

60

Channels

Page :21

- existing Effelsberg PAF and its GPU cluster was used for a first test
- 36 voltage data streams of the Effelsberg PAF are accessible
 - via modified beam-weights
- first snap-shot data was recorded in December 2020
 - ACMs can be calculated, beam-weight determination algorithms are implemented / tested

Date: 22.4.2024

first on sky test-run in July 2021

70

50

40

30

Backend

Key Specs

- Beamformer
 - 128 beams (integrated)
 - 2 x 8 dual-pol beams
- Data-products
 - VLBI (VDIF)
 - Full-Stokes spectra
 - Pulsar timing
 - Pulsar & transient search
- HPC-cluster
 - System can be used as HPCcluster for data reduction while PAF is not in use

Date: 22.4.2024

S. Heyminck/ Max-Planck-Institute for Radio Astronomy

Page:22

And finally ... EDDGAR it is arriving ...

Date: 22.4.2024

S. Heyminck/ Max-Planck-Institu

Conclusions

- The first generation cryo-PAF for the Effelsberg 100 m is on its way
 - using a fully integrated cryogenic frontend
 - separating digitization and first FPGA processor by 100 m
- Most components are ordered
- Telescope infrastructure is ready
- Backend and digitization is in instllation process
 - software is under development and partly even ready for roll out
- Cryostat is coming closer to its final design
 - antenna array is nearly finalized
 - cryogenic frontend is in prototype state (tests are ongoing)

